TP: Passer les bornes, y'a plus de limite !!!

Objectifs:

- * Interpréter la couleur d'un système chimique à l'état final et identifier le réactif limitant.
- * Découvrir les proportions stœchiométriques d'un système chimique.

Lu dans l'encyclopédie en ligne Wikipédia :

Dans une réaction chimique, le réactif limitant est le réactif qui est totalement transformé, qui disparaît complètement. Il est dit « limitant » car il est responsable de l'arrêt de la réaction. S'il n'y a pas de réactif limitant, c'est qu'à la fin de la réaction tous les réactifs ont été transformés : on dit que les réactifs étaient en proportions stœchiométriques.

Pour vérifier les affirmations précédentes, on étudie le système chimique constitué d'un mélange d'une solution aqueuse de diiode I_{2(aq)} (molécules de diiode) notée S₁, et d'une solution de thiosulfate de sodium (ion sodium Na⁺_(aq) et ion thiosulfate $S_2O_3^{2-}(aq)$) notée S_2 .

I- Observations préliminaires

Le diiode présente une couleur jaune-orangé plus ou moins intense en solution aqueuse.

- 1- Dans 2 tubes à essais, verser environ 2 mL d'empois d'amidon. Ajouter 2 gouttes de solution de diiode S₁ dans l'un et 2 gouttes d'eau dans l'autre. Observer et conclure.
- 2- Dans un tube à essais, verser environ 2 mL de solution de thiosulfate de sodium S2. Ajouter 2 gouttes de solution de diiode S₁. Observer et conclure.
 - 3- Le diiode a réagi avec quelle espèce chimique : l'ion thiosulfate S₂O₃²⁻ ou l'ion sodium Na⁺ ?

Dans un tube à essais, verser environ 2 mL de solution de chlorure de sodium (Na+(aq) et Cl-(aq)) ou eau salée. Ajouter 2 gouttes de solution de dijode S₁. Observer et conclure.

II- Réactif limitant

Réaliser les mélanges indiqués ci-dessous dans un bécher. Noter vos observations dans le tableau ci-dessous.

Mélange	Couleur en fin de	Diiode entièrement	Reste des ions	Réactif limitant ?
	réaction	consommé ?	thiosulfates?	
$V(S_1) = 2.5 \text{ mL}$				
$V(S_2) = 7.5 \text{ mL}$				
$V(S_1) = 7.5 \text{ mL}$				
$V(S_2) = 2.5 \text{ mL}$				

III- Proportions stœchiométriques

1- Mise en évidence

- * Annoter le schéma du montage ci-contre.
- * Prélever un volume $V_1 = 10,0$ mL de solution de diiode (S_1)
- * Verser dans un erlenmeyer propre. Remplir la burette graduée avec la solution de thiosulfate de sodium (S2). Ajuster le "zéro".
- * Placer l'erlenmeyer sous la burette. Placer un barreau aimanté et mettre en service l'agitation magnétique de façon modérée.
- * Verser progressivement la solution S₂ jusqu'à observer une teinte jaune pâle dans l'erlenmeyer.
- * Ajouter quelques gouttes d'empois d'amidon de façon à faire apparaître nettement la teinte caractéristique en présence de diiode. Verser alors goutte à goutte la solution S₂ jusqu'à disparition de la teinte bleue.
- a- Noter le volume V_2 de la solution (S_2) ayant été versé dans l'erlenmeyer. Que peut-on dire du diiode initialement introduit dans l'erlenmeyer?

- **b-** Verser un peu de mélange réactionnel dans un tube à essais. Ajouter quelques gouttes de solution de diiode S₁. Observer.
 - c- Pourquoi peut-on dire qu'il y a eu disparition totale des ions thiosulfate dans le mélange ?

2- Écriture de la réaction

a- Écrire cette réaction d'oxydo-réduction sachant qu'elle fait intervenir les couples d'oxydo-réduction $I_{2(aq)} / I_{(aq)}^-$ et $S_4O_6{}^{2}_{(aq)} / S_2O_3{}^{2}_{(aq)}$.

Rem: les ions S₄O₆²⁻ se nomment les ions tétrathionate.

Les nombres placés devant les formules des réactifs indiquent **les proportions stœchiométriques**, c'est-à-dire les proportions dans lesquelles les réactifs disparaissent au cours de la transformation chimique.

b- Compléter le tableau d'avancement. On notera $n(I_2)_{initiale}$ la quantité de matière initiale de diiode et $n(S_2O_3^{2-})_{versée}$ la quantité de matière versée d'ion thiosulfate.

Équation de réaction		+		\rightarrow		+	
État	Avancement	Quantité de matière (mol)					
initial	0						
intermédiaire	х						
final	X _f						

c- Déterminer la valeur x_{max} pour que la réaction se déroule dans les conditions stœchiométriques.

La solution aqueuse de diiode utilisée est de concentration en quantité de matière en diiode $C(I_{2(aq)}) = C_1 = 1.10^{-2} \text{ mol.L}^{-1}$, et celle de thiosulfate de sodium de concentration en quantité de matière $C(S_2O_3^{2-}_{(aq)}) = C_2 = 1.10^{-2} \text{ mol.L}^{-1}$.

- **d-** Calculer la quantité de matière initiale de diiode notée $n(I_2)_{initiale}$. En déduire la quantité de matière d'ion thiosulfate versée $n(S_2O_3^{2-})_{versée}$ pour être dans les conditions stœchiométriques.
 - e- En déduire le volume versé d'ion thiosulfate.
 - f- Ce résultat est-il compatible avec l'étude expérimentale précédente