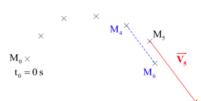
MOUVEMENT ET INTERACTIONS

TP: Vitesse et variation de vitesse: annexe

A- Comment tracer le vecteur vitesse ?

1- Calculer la valeur de la vitesse

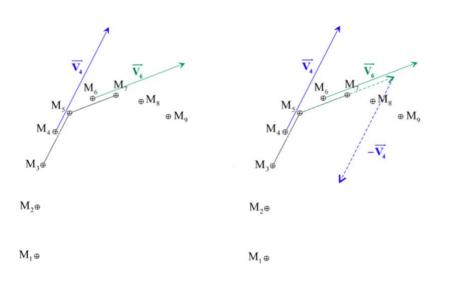

Tracer le segment M_4M_6 et mesurer le segment M_4M_6 Déterminer la durée t_6 - t_4 , elle est égale à deux fois la durée entre 2 positions enregistrées donc t_6 - t_4 = 2τ . \times \times M_4 M_5 $M_0 \times$ M_6 M_6

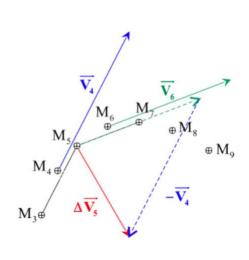
Calcul de la valeur de la vitesse $V_5 = \frac{M_4 M_6}{t_6 - t_4} = \frac{M_4 M_6}{2 t}$ en m.s-1

1- Tracer le vecteur vitesse \vec{V}_s

L'origine de ce vecteur est le point M_5 La direction du vecteur vitesse est la même que celle du segment M_4M_6 , c'est la

tangente à la trajectoire au point M₅ La longueur du vecteur vitesse doit être calculée à partir de l'échelle proposée


B- Comment construire le vecteur variation de vitesse $\overrightarrow{\Delta V_{\rm S}} = \overrightarrow{V_{\rm G}} - \overrightarrow{V_{\rm G}}$?


Tracer les vecteurs vitesses \overrightarrow{V}_4 et \overrightarrow{V}_6

Au point M5 reconstruire le vecteur \overrightarrow{V}_6 par translation

Conctruire le vecteur $-\vec{V}_4$ depuis l'extrémité du vecteur \vec{V}_6 reconstruit juste avant

Le vecteur $\overrightarrow{\Delta V_5}$ est le vecteur qui joint l'origine de \overrightarrow{V}_6 , du point M5, à l'extrémité de $-\overrightarrow{V}_4$

